Pressure Drop Curves Comparing Standard PPS vs ePTFE membrane

Operating Life (months)

Basic Equations:

- 1) Fan Motor Horsepower (hp) = Air Volume (cfm) x System Resistance (in. H20) 6356 x Mechanical Efficiency
- 2) Electric Energy Cost (dollars/hour) = hp x 0.746 kw per hp x unit cost of Electric Energy (dollars per kw hr)

Assumptions:

- Mechanical Efficiency = Fan Efficiency x Motor Efficiency x Drive Efficiency By substituting typical efficiency values Mechanical Efficiency = 0.70 (fan) x 0.90 (motor) x 0.99 (drive) = 0.62
- 2) Annual Hours of Operation = 365 days/year x 24 hours/day = 8760 hours

Energy Cost Equation:

By combining the two basic equations and assumptions above, the following expression can be attained:

Annual Energy Cost in Dollars per 1000cfm =

1000 cfm x System Resistance (in. H20) x 0.746 x unit cost of electric energy (\$ per kw hr) x 8760

6356 x 0.62

Power Plant Size	350 MW	500 MW
Total Air Volume (ACFM)*	1,225,000	1,750,000
Energy Savings per Year with 1.0" lower DP**	approx. \$100k	approx. \$145k
Energy Savings per Year with 2.0" lower DP**	approx. \$200k	approx. \$290k

